
Quantum Mechanics I
Week 1 (Solutions)

Spring Semester 2025

1 Ionization Energy of Be3+

In this exercise, we will calculate the ionization energy of the triply ionized beryllium
atom Be3+. Beryllium has an atomic number of Z = 4, and has four electrons orbiting
its nucleus. Here, we consider the triply ionized state, where three of these electrons have
been removed. As a result, only a single electron remains, orbiting the beryllium nucleus.

(a) How are the energies of the Bohr model modified for an electron orbiting around a
nucleus with Z protons?

In the original Bohr model we have the energies

En = −ke2

2a0

1

n2
, n = 1, 2, 3, ... , (1.1)

where a0 = ℏ2/(meke
2) is the Bohr radius. This model applies to the case of a single

electron orbiting around a nucleus comprised of one proton. If instead, the nucleus
contained Z proton which is the case of the ionized elements He+, Li2+ and Be3+,
the energies are modified as follows:

En = −ke2

2a0

Z2

n2
, n = 1, 2, 3, ... . (1.2)

You may easily verify this by applying the assumptions of the Bohr model (as
presented in the Lecture notes) to a system of an electron and a nucleus with Z
protons. Thus, the energy of the system is

E =
mv2

2
− k

Ze2

r
= −k

Ze2

2r
(1.3)

where in the second equality we have used mv2/r = kZe2/r2 (Newton’s second law
for a circular orbit). We express the latter as L2 = mkZe2r where L = mvr. Then
we find, by using the angular momentum quantization condition Ln = nℏ,

rn =
n2ℏ2

mkZe2
, n = 1, 2, 3... . (1.4)

We introduce this into Eq. (1.3), and we find Eq. (1.2).
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(b) What is the ionization energy of the Hydrogen atom?

To obtain the ionization energy of the Hydrogen atom, i.e. the minimum energy
required to remove an electron in the ground state of the atom, we take the n = 1,
and we find that this energy is E = −13.6 eV . This numerical value is obtained
when we compute the constant ke2/(2a0)).

(c) Use the atomic number of the triply ionized Beryllium atom to find the ionization
energy of this atom.

For the triply ionized Beryllium atom, we have Z = 4. Thus we find:

En = −13.6eV
16

n2
. (1.5)

For n = 1, the ionization energy is E1 = −217.6eV .

2 Photoelectric effect
Caesium is an alkali metal, and has an extraction potential of approximately Vs = 2.1 V.
Suppose to irradiate the metal with a lamp which emits light of wavelength λ = 5000Å.

(a) Calculate the maximum energy of a photoelectron.

The maximum energy of a photoelectron is given by Kmax = hf − ϕ where ϕ is the
work function. The work function can be obtained with the extraction potential.
In eV , this is ϕ = qV = 2.1eV . Then, we need to convert the given wavelength into
energy in units of eV by using:

E = hf =
hc

λ
. (2.1)

If we plug in λ in the above expression, we get 2.48 eV. Then, the maximum kinetic
energy is found as Kmax = 2.48 eV − 2.1 eV = 0.38 eV.

(b) Suppose to use a very weak lamp, with power 1 mW, located at a distance of 10 cm
from a Cs sample. Suppose that the sample exposes a surface of 1 cm2 to light, and
that the intensity of the lamp is distributed in a spherically-symmetric way. The
typical radius of an atom is assumed to be 10−8 cm. How many seconds of exposure
would be necessary in the classical theory to absorb the energy necessary to emit a
single electron at an energy equal to that computed in Question (a).

We start by computing the intensity of the source at a distance of h = 10 cm,

I =
P

4πh2
=

1mW

4π102cm2
= 7.96 · 10−7 W

cm2
. (2.2)
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Then, we need to compute to how much light each atom in the sample is exposed
to. We do that by using the intensity of light times the are of exposure πR2 where
R is the radius of the atom,

Pabs = I · πa2 = 7.96 · 10−7 W

cm2
· π · 10−16cm2 = 25 · 10−23W . (2.3)

Now, we need to compute the time exposed to the radiation. The energy supplied
to the atom is hf = 2.48eV , as found in the previous question.

texp =
E

Pabs

=
2.48eV

25 · 10−23W
= 1.58 · 103s . (2.4)

However, the experiment shows that the extraction of an electron happens (almost)
instantaneously. Thus a classical treatment fails to explain the observation.

3 The Ground State of an Electron-Positron Pair
Consider an electron of mass m and charge −e and a positron of mass m and charge +e.
Due to the Coulomb attraction between the two charges, the two particles form a bound
pair (known as "positronium"). The goal of this exercise is to calculate the ground state
energy of positronium using the quantization condition.

(a) Derive an expression for the velocity and the radius of the orbit for the electron and
the positron, in the frame of reference of the center of mass. In the calculations,
assume that the orbits are circular, and assume a description in terms of classical
mechanics.

In the frame of reference of the center of mass, the vectors specifying the
coordinates and the momenta of the electron and the positron are always related
by re = −rp, pe = −pp.

These relations are a consequence of the fact that the masses of the electron and
the positron are equal to each other, and is true not only for circular orbits but,
more generally, even for the elliptical, parabolic or hyperbolic orbits (which are the
possible solutions to the classical Coulomb or Kepler two-body problem)1.
It follows that the angular momenta of the two particles are Le = re × pe = Lp =
rp×pp = Ltot/2, where Ltot is the total angular momentum. Using Newton’s second
law gives then for the absolute values:

mv2e/re =
2mv2

r
=

ke2

r2
, (3.1)

where ve is the modulus of the electron’s velocity, and r = 2re is the distance between
the electron and the positron.

1If the two masses were different, one would have pe = −pp and (mere +mprp)m
−1
tot = rcom = 0 in

the frame of reference of the center of mass.
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(b) Assuming as a quantization condition that the total angular momentum of the
bound pair is L = nℏ and assuming n = 1 find an expression for the ground-state
energy of positronium.

The quantization condition on the total angular momentum gives Ltot = mvre +
mvrp = 2×mv(r/2) = mvr = nℏ, since the velocities of the particles are equal and
opposite in the center of mass frame. Combining these relations with those found
from Newton’s second law gives

v =
ke2

2nℏ
r =

2n2ℏ2

kme2
= 2n2a0 . (3.2)

The total energy is, then,

E = 2× 1

2
mv2 − ke2

r
=

ke2

4n2a0
− ke2

2n2a0
= − ke2

4n2a0
. (3.3)

The ground state energy corresponds to n = 1 and gives

E = −ke2

4a0
. (3.4)

The energy is thus, twice smaller than that of a hydrogen atom. The ionization
energy needed to break free a positronium pair starting from the ground state is
approximately E0 ≃ −13.6/2eV = −6.8eV .

As a remark, note that the two-body problem considered here can be reduced to
an effective one-body problem. The effective problem is equivalent in form to the
problem of the hydrogen atom, however with the mass replaced by the "reduced
mass" µ = (1/me+1/mp)

−1. In the case of positronium, µ is simply µ = (2/m)−1 =
m/2. The Bohr formula for the ground state energy, E0 = −k2me4/(2ℏ2), shows
that E0 is proportional to the mass (at fixed charge). We thus recover that the
positronium energy is half of that of the hydrogen atom.

The same argument can be used to calculate the spectrum of the hydrogen atom
taking into account the motion of the proton (which performs a small orbit around
the center of mass). However since the proton is much heavier than the electron
(me/mp ≃ 1/2000), the reduced mass µ is to an excellent approximation equal to
the electron mass: µ ≃ me. This shows that for the hydrogen atom the motion of
the proton can be neglected.

4 The Blackbody Radiation Formula
Consider the energy density per unit volume per frequency of a black body as conceived
by Max Planck

uf (f, T ) =
8πhf 3

c3
1

ehf/kBT − 1
. (4.1)
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(a) Show that for large f , the energy density is reduced to

uf (f, T ) ≈
8πhf 3

c3
e−hf/kBT . (4.2)

This is the Wien’s exponential law.

In this limit, the exponent of the exponential function in the denominator will be
very large, i.e. ehf/kBT ≫ 1. Thus, we have in this limit:

uf (f, T ) ≈
8πhf 3

c3
1

ehf/kBT
=

8πhf 3

c3
e−hf/kBT , (4.3)

which gives us the desired result.

(b) Show that for small f , the energy density is reduced to

uf (f, T ) ≈
8πf 2

c3
kBT . (4.4)

Hint: You may use the Taylor expansion of the exponential function ex ≈ 1 + x for
small x.

In the limit of small f , we expand the exponential function in the denominator for
small hf/kBT using the Taylor expansion:

ehf/kBT ≈ 1 + hf/kBT . (4.5)

Using this result in Eq. (4.1), we find

uf (f, T ) ≈
8πhf 3

c3
1

1 + hf/kBT − 1
=

8πf 2

c3
kBT . (4.6)

(c) Set x = hf/kBT in Eq. (4.1). Find an expression for the value xmax that maximizes
the energy density uf (f, T ).

By setting x = hf/kBT in Eq. (4.1), we obtain

u(x, T ) =
8πx3k3

BT
3

h2c3
1

ex − 1
. (4.7)

Now, we take a derivative with respect to x

du(x, T )

dx
=

8πk3
BT

3

h2c3

[
3x2

ex − 1
− x3ex

(ex − 1)2

]
(4.8)
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We set this to zero, and we obtain the following equation:

3x2
max

exmax − 1
− x3

maxe
xmax

(exmax − 1)2
= 0 ⇒ 3x2

maxe
xmax − 3x2

max − x3
maxe

xmax = 0 (4.9)

We eliminate the solution of x = 0 as the trivial solution, thus

3exmax − 3− xmaxe
xmax = 0 , (4.10)

which we can re-write as

(3− xmax) = 3e−xmax . (4.11)

(d) Find an approximate numerical value of xmax by solving the equations found in
question (c) under the approximation e−x ≪ 1.

Using this approximation for Eq. (4.11), the RHS will tend to zero, and thus

xmax ≈ 3 . (4.12)

(e) Show that the corresponding wavelength at the maximum takes the form of:

λmaxT = C . (4.13)

Find the constant C and its value. This is the so-called Wien’s displacement law
for the maximum wavelength.

Using the latter result and the definition of x, we find

xmax =
hfmax

kBT
=

hc

kBλmaxT
= 3 ⇒ λmaxT =

hc

3kB
. (4.14)

Thus the constant C is equal to hc/(3kB). Evaluating C using the numerical
values of all fundamental constants in SI units, we find C ≈ 4.8 · 10−3mK. The
value measured from the experiments is Cexp ≈ 2.9 · 10−3mK. A significant
discrepancy is observed which we address in the next question.

(f) Eq. (4.1) gives the energy density per unit volume and per unit frequency.
Calculate, by a change of variables, the energy density per unit wavelengths
uλ(λ, T ) (such that the energy density of the electromagnetic waves within a range
of wavelengths (λ1, λ2) is

∫ λ2

λ1
dλ uλ(λ, T )). As shown in Questions (d,e), the

maximum of u(f, T ) occurs at fmax = xmaxkBT/h ≃ 3kBT/h. Show that instead
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the maximum of uλ(λ, T ) is at λmaxT ≃ hc/(5kB). Why is there a discrepancy?

Switching from λ to f , we find

∫
df uf (f, T ) =

∫
dλ

∣∣∣∣∣dfdλ
∣∣∣∣∣uf (f(λ), T ) =

∫
dλ uλ(λ, T ) (4.15)

Thus, the spectral energy density is

uλ(λ, T ) =

∣∣∣∣∣dfdλ
∣∣∣∣∣uf (f(λ), T ) . (4.16)

Using f = c/λ and df = −c/λ2dλ, we find:

uλ(λ, T ) =
c

λ2

8πhc3

c3λ3

1

ehc/λkBT − 1
=

8πhc

λ5

1

ehc/λkBT − 1
. (4.17)

Now we set x = hc/λkBT , and we have

ux(x, T ) =
8π(kBT )

5

(hc)5
x5

ex − 1
. (4.18)

We take the derivative with respect to x and we set it to zero to obtain

5− xmax = 5e−xmax , (4.19)

where we have discarded the trivial solution x = 0. We again use the approximation
e−xmax ≪ 1, and thus obtain:

xmax ≈ 5 . (4.20)

Using the definition of x, we obtain the Wien’s displacement law

λmaxT = B, B =
hc

5kB
. (4.21)

Evaluating the constant B yields 2.88 · 10−3mK, which is much closer to the
experimental value! Hence, in order to obtain the correct constant, we must
appropriately map the energy density uf (f, T ) to the spectral energy density
uλ(λ, T ).

(g) What are the characteristic temperatures for which the maximum of uλ(λ, T )
corresponds to visible light with yellow color? (λ ≃ 580 nm).

We use the Wien’s displacement law, as we have obtained it in the previous Question,
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λmaxT = 2.88 · 10−3mK . (4.22)

By using λmax = 580 nm, we find T = 4966 K.

(h) Compute the total energy density by integrating over the frequency domain. This
corresponds to the area under the energy density curve. Show that:

c

4

∫ ∞

0

df uf (f, T ) = σT 4, σ =
2π5k4

B

15h3c2
, (4.23)

and σ is the Stefan-Boltzmann constant. Hint: Use
∫∞
0

dx x3/(ex − 1) = π4/15.

We simply integrate over the energy density as follows:

I =
c

4

∫ ∞

0

df u(f, T ) =
c

4

8πh

c3

∫ ∞

0

df
f 3

ehf/kBT − 1
. (4.24)

We change variables according to x = hf/kBT , and our expression becomes:

I =
2πh

c2
(kBT )

4

h4

∫ ∞

0

dx
x3

ex − 1
(4.25)

By using what is given, i.e.
∫∞
0

dx x3/(ex − 1) = π4/15, we find:

I =
2πh

c2
(kBT )

4

h4

π4

15
=

2π5k4
B

15h3c2
T 4 = σT 4 . (4.26)

The Stefan-Boltzmann law describes the intensity of the thermal radiation emitted
in terms of the body’s temperature. This relation was derived empirically by Josef
Stefan, while proved theoretically by Ludwig Boltzmann.
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